
www.elsevier.com/locate/jmr

Journal of Magnetic Resonance 180 (2006) 297–304
Communication

Quadrupolar transfer pathways

Sasa Antonijevic a,*, Geoffrey Bodenhausen a,b
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Abstract

A set of graphical conventions called quadrupolar transfer pathways is proposed to describe a wide range of experiments designed for
the study of quadrupolar nuclei with spin quantum numbers I = 1, 3/2, 2, 5/2, etc. These pathways, which inter alea allow one to appre-
ciate the distinction between quadrupolar and Zeeman echoes, represent a generalization of the well-known coherence transfer pathways.
Quadrupolar transfer pathways not merely distinguish coherences with different orders �2I 6 p 6 +2I, but allow one to follow the fate
of coherences associated with single transitions that have the same coherence order p ¼ mr

I � ms
I but can be distinguished by a satellite

order q ¼ ðmr
IÞ

2 � ðms
IÞ

2.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Coherence transfer pathways [1–5], have become popu-
lar not only to describe a variety of experiments designed
for systems containing coupled spins with I = 1/2, but also
for methods intended to characterize quadrupolar spins
with I > 1/2. Three reasons appear to contribute to the
popularity of coherence transfer pathways: (i) they supple-
ment the information conveyed by pulse sequence dia-
grams, (ii) they allow one to derive appropriate phase-
cycles or pulsed field gradient schemes to select desired
pathways, and (iii) they allow one to define the conditions
that must be fulfilled to obtain pure absorptive line-shapes
in two-dimensional spectra. However, conventional coher-
ence transfer pathways are not very well adapted to de-
scribe experiments designed for quadrupolar spins. In
particular, they fail to describe the distinction between Zee-
man echoes and quadrupolar echoes [6–10]. This paper
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describes quadrupolar transfer pathways, an extension of
the graphical conventions of ‘‘ordinary’’ coherence transfer
pathways. While the latter merely distinguish different
coherence orders p ¼ mr

I � ms
I , the new formalism keeps

track of coherences that have the same order p but different
satellite orders q ¼ ðmr

IÞ
2 � ðms

IÞ
2. The index q can adopt

2I + 1 � |p| different integer values corresponding to the
number of lines in the p-quantum spectrum.

2. Classification of elements of density operators

Elements of the density operator can be classified
according to coherence order p. This quantum number de-
scribes the effect of a rotation about the quantization axis z
on density operator terms rp of coherence order p [11]

expf�i/Izgrp expfþi/I zg ¼ rp expf�ip/g. ð1Þ
For quadrupolar spins, irreducible tensor operators T‘,p of
rank ‘ and coherence order p provide a convenient basis set
to expand the density operator [12–14]. The matrix
representations of tensor operators for spin I = 1 are
shown in Fig. 1. Tensor operators obey simple rules
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Fig. 1. Top: matrix representations of conventional tensor operators T‘,p with rank ‘ and coherence order p in the base (|mI = +1æ, |mI = 0æ, |mI = �1æ) of
a spin I = 1. Middle: single-element operators Ip,q = |ræÆs| defined in this work, with coherence order p ¼ mr

I � ms
I and satellite order q ¼ ðmr

I Þ
2 � ðms

I Þ
2.

Bottom: the set can be completed with 2I + 1 polarization operators Ir
0;0 ¼ jrihrj that all have p = q = 0, but can be distinguished by the index r ¼ mr

I .
Generalizations for spins I > 1 are straightforward.
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under non-selective rotations induced by radio-frequency
(RF) pulses with xRF � xPAS

Q (which is the exception rath-
er than the rule in quadrupolar NMR), since the coeffi-
cients are given by Wigner rotation matrix elements [12–14]

T l;p!
b/
Xl

p0¼�l

dl
p0 ;pðbÞ expf�iðp0 � pÞ/gT l;p0 ; ð2Þ

where b is the nutation angle of a non-selective RF pulse,
and / is its phase with respect to the y-axis, so that an x-
pulse has a phase / = 270�. The reduced Wigner rotation
matrix elements dl

p0 ;pðbÞ are tabulated in various works of
reference [13–15].

To describe experiments intended to characterize quad-
rupolar spins (I > 1/2), we advocate the use of single-ele-
ment operators I(r,s) (Fig. 1). Each transition between two
eigenstates |ræ and |sæ can be associated with two coherences
described by the two single-element operators I(r,s) = |ræÆs|
and I(s,r) = |sæÆr| [3,16,17]. These are not Hermitian, in con-
trast to single transition operators or fictitious spin 1/2
operators. These two coherences have opposite coherence
orders pðI ðr;sÞÞ¼mr

I�ms
I and pðI ðs;rÞÞ¼ms

I�mr
I ¼ �pðI ðr;sÞÞ.
To obtain pathway diagrams that are tailored for
quadrupolar spins, we suggest that the single-element
coherences I(r,s) be re-labeled by using the symbol Ip,q

(Fig. 2), where p is the usual coherence order and q is the
satellite order defined by q¼ðmr

IÞ
2�ðms

IÞ
2. This index q

allows one to distinguish the 2I + 1 � |p| coherences associ-
ated with each value of p. To describe second- and higher-
order quadrupole contributions, one may use higher terms
such as qð3Þ ¼ ðmr

IÞ
3�ðms

IÞ
3, etc. Note that all polarization

operators |ræÆr| have p = q = 0, so that the satellite order
q does not allow one to distinguish them. If necessary,
the polarization operators I r

0;0 can be distinguished by the
index r¼mr

I . A single-element operator Ip,q = |ræÆs| should
not be confused with an irreducible tensor operator
T‘,p. As may be appreciated from the matrices in Fig. 1,
the two sets can be readily interconverted by linear
combinations.

The interaction between the electric quadrupole moment
of a nucleus and the local electric field gradient results in a
perturbation of the Zeeman energy levels. The first-order
contribution xð1ÞQ of the quadrupolar interaction to the
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Fig. 2. Elements of matrix representations of density operators for spins I = 1/2, 1, and 3/2. (A) The usual classification of a coherent superposition |ræÆs|
between two states |r> and |sæ according to the coherence order p ¼ mr

I � ms
I . This classification of the elements does not allow one to distinguish between

the 2I + 1 � |p| coherences with the same order p. (B) Proposal for a classification of the elements Ip,q = |ræÆs| distinguished according to the satellite order
q ¼ ðmr

I Þ
2 � ðms

I Þ
2. (C) Elements Ip,q = |ræÆs| for spins I = 1/2, 1, and 3/2, where a coherent superposition |ræÆs| between a pair of eigenstates |ræ and |sæ is

described by an arrow |s> fi |ræ. (D) Schematic p-quantum spectra showing transitions distinguished by their satellite order q. The intensities of the
individual lines are drawn equal for simplicity. The quadrupolar splittings for I = 1 and 3/2 correspond to multiples of the first-order quadrupolar
interaction xQ. Both the gyromagnetic ratio c and the quadrupolar coupling constant CQ are assumed to be positive.
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frequency of a single-element operator Ip,q, henceforth sim-
ply called xQ, is given by

qxQ ¼ qxPAS
Q

3 cos2 h0 � 1

2
þ

gQ

2
sin2 h0 cos 2/0

� �
; ð3Þ

where h 0 and / 0 are the Euler angles describing the trans-
formation from the principal axis system of the quadrupo-
lar tensor to the laboratory frame,
xPAS

Q =2p ¼ 3CQ=4Ið2I � 1Þ is the quadrupolar interaction
parameter, CQ = e2qQ/h the quadrupolar coupling con-
stant, and gQ the asymmetry parameter.

The transformations of Ip,q during a free precession
interval t under an offset X and a first-order quadrupolar
interaction xQ are given by the following rules:

Ip;q!
Xt

expf�ipXtgIp;q; ð4Þ

Ip;q!
xQt

expf�iqxQtgIp;q. ð5Þ
Indeed, it is well known that the offset X is ‘amplified’ for
higher-quantum transitions in proportion to the coherence
order p. The satellite order gives a direct measure of the
first-order quadrupolar splittings as illustrated in Fig. 2D.
For I = 1 the SQC doublet (xQ,�xQ) corresponds to
q = (1,�1), and the DQC singlet to q = 0. For I = 3/2
the SQC triplet (2xQ,0,�2xQ) corresponds to
q = (+2,0,�2), the DQC doublet (2xQ,�2xQ) to
q = (+2,�2), and the TQC singlet to q = 0. The generaliza-
tion to spins with I > 3/2 is straightforward. Thus for
I = 5/2 the SQC quintuplet (4xQ,2xQ,0,�2xQ,�4xQ) cor-
responds to q = (+4,+2,0,�2,�4), the DQC quartet
(6xQ,2xQ,�2xQ,�6xQ) to q = (+6, +2,�2,�6), the
TQC triplet (6xQ,0,�6xQ) to q = (+6, 0,�6), the 4QC
doublet (4xQ,�4xQ) to q = (+4,�4), and the 5QC singlet
to q = 0.

To form a Zeeman echo, the sign of the coherence order
must be changed (p 0 = �p) between the de- and refocusing
intervals of equal length sdef = sref, so that the effective off-
set changes sign (p 0X = �pX), thus resulting in a cancella-
tion of the accumulated phase / = pXsdef + p 0Xsref = 0. On
the other hand, to form a first order quadrupolar echo, one
has to change the sign of the satellite index, so that the
accumulated phase vanishes / = qxQsdef + q 0xQsref = 0.
In general, coherence transfer echoes [3,11] will occur when
both p and q change, i.e., when / = (pX + qxQ)
sdef + (p 0X + q 0xQ)sref = 0 [8]. It is therefore important to
keep track of the satellite index q in addition to the coher-
ence order p when drawing coherence transfer pathway dia-
grams. This, in a nutshell, is the subject of this paper.

Fig. 3 shows the distinction between Zeeman and quad-
rupolar echoes for spin I = 1 in terms of ‘‘coherence trans-
fer walkways’’ such as advocated by Kwak and Gan [18].
Such coherence transfer processes can also be drawn on
the energy level diagrams. Fig. 4 shows pulse sequences
for three basic echo experiments, together with (conven-
tional) coherence transfer pathways (that allow one to keep
track of p only) for a spin I = 1, and (novel) quadrupolar



Fig. 3. Coherence transfer processes for spin I = 1 between single-
quantum coherences Ip,q of coherence order p and satellite order q. Left:
drawn on top of the matrix representations of the density operator in the
manner of ‘‘coherence transfer walkways.’’ Right: in terms of energy level
diagrams where the coherences are represented by arrows pointing down
or up for p = +1 or �1, respectively. If the sign of p is changed, the
Zeeman interaction (offset) is refocused; if the satellite order q changes
sign, the first-order quadrupole interaction is refocused.

A

B

C

Fig. 4. (A) Zeeman echo induced by a p refocusing pulse, (B) quadrupolar
echo with a p/2 refocusing pulse combined with the Exorcycle phase
cycling scheme, and (C) quadrupolar echo, also with a p/2 refocusing
pulse, but used with the anti-Exorcycle scheme. The conventional
coherence transfer pathways only indicate the coherence order p and do
not give any insight into the formation of quadrupolar echoes. The
quadrupolar transfer pathways drawn for I = 1 also indicate the satellite
order q and allow one to appreciate the difference between quadrupolar
echoes, where first-order quadrupolar interactions xQ are refocused, as in
sequence (B) and (C), and Zeeman echoes, where chemical shifts and
offsets X are refocused, as in (A and B).
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transfer pathways that show q in addition to p. All three
pulse sequences feature a defocusing interval sdef during
which the coherences evolve under shifts and first-order
quadrupolar interactions. For the Carr–Purcell echo se-
quence in Fig. 4A, the p pulse results in a change in sign
of the coherence order p but not of the satellite order q.
For spin I = 1, the single-element operators undergo the
following transformations with Dp = p 0 � p

Ip;q!
p/

expf�iDp/gI�p;q. ð6Þ
Since the evolution under the offset X changes sign, a Zee-
man echo will occur after a delay sref, while the evolution
under the first-order quadrupolar interaction xQ keeps
the same sign (q 0 = q), so that no first-order quadrupolar
echo can be formed. This subtle distinction is obvious from
inspection of the quadrupolar transfer pathways in
Fig. 4A.

In order to refocus the first-order quadrupolar interac-
tion it is necessary to change the sign q 0 = �q. This can
be achieved with the quadrupolar echo sequences of Figs.
4B and C that utilize p/2 pulses. For spin I = 1 one can
readily show by converting the Ip,q into T‘,p, using Eq.
(2), and reconverting T‘,p 0 back into Ip 0,q 0 that:

I1;þ1 !
ðp=2Þ/ � 1

2
ffiffiffi
2
p expfi/gðIþ1

0;0 � I�1
0;0Þ

þ 1

2
ðI1;�1 � expfi2/gI�1;�1Þ

þ 1

2
ffiffiffi
2
p ðexpf�i/gI2;0 � expfi3/gI�2;0Þ; ð7Þ
I1;�1 !
ðp=2Þ/ � 1

2
ffiffiffi
2
p expfi/gðIþ1

0;0 � I�1
0;0Þ

þ 1

2
ðI1;þ1 � expfi2/gI�1;þ1Þ

þ 1

2
ffiffiffi
2
p ð� expf�i/gI2;0 þ expfi3/gI�2;0Þ;

ð8Þ



Fig. 5. Pulse sequence and quadrupolar transfer pathways for a two-
dimensional correlation method designed to separate quadrupolar xQ and
chemical shift anisotropy X interactions for I = 1. The experiment
refocuses xQ but not X in the evolution period t1, and refocuses both X
and xQ over the two s periods. These effects are readily understood by
inspection of the quadrupolar transfer pathways.
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I�1;�1 !
ðp=2Þ/ � 1

2
ffiffiffi
2
p expf�i/gðIþ1

0;0 � I�1
0;0Þ

þ 1

2
ðI�1;þ1 � expf�i2/gI1;þ1Þ

þ 1

2
ffiffiffi
2
p ð� expf�i3/gI2;0 þ expfi/gI�2;0Þ; ð9Þ

I�1;þ1 !
ðp=2Þ/ � 1

2
ffiffiffi
2
p expf�i/gðIþ1

0;0 � I�1
0;0Þ

þ 1

2
ðI�1;�1 � expf�i2/gI1;�1Þ

þ 1

2
ffiffiffi
2
p ðexpf�i3/gI2;0 � expfi/gI�2;0Þ. ð10Þ

Note that the imaginary coefficients of the polarization
operators Ir

0;0 cancel if the starting density operator is Her-
mitian, e.g., if r(0) = I1,+1 + I�1,�1. A generalization of
Eqs. (7)–(10) to spins I > 1 is straightforward but of limited
use, since such systems usually have large quadrupolar
interactions making it difficult to achieve non-selective
rotations.

The ‘‘Exorcycle’’ phase-cycling scheme [19] can be used
to select operators that undergo a change of the coherence
order Dp = p 0 � p = ±2. This consists in repeating the
experiment four times while incrementing the phase / of
the second pulse in steps of p/2, combined with alternating
addition and subtraction of the spectra

I1;þ1 !
ðp=2Þ/ 1

2
I�1;�1 ðall other terms being eliminated by

ExorcycleÞ. ð11Þ

In this case illustrated in Fig. 4B, the change in sign
p 0 = �p is accompanied by a change in sign q 0 = �q, so
that both Zeeman and first-order quadrupolar effects are
refocused. This is particularly useful when recording deute-
rium spectra of paramagnetic solids [10]. Note the factor 1/
2 in Eq. (11): half the signal intensity is lost compared to a
conventional quadrupolar echo where the refocusing pulse
is applied with a phase shift of p/2 with respect to the first
pulse. This is the price that must be paid for simultaneous
refocusing of both X and xQ. Alternatively, an ‘‘anti-Exor-
cycle’’ scheme can be used (Fig. 4C) to retain only signals
arising from operators that retain their coherence order
p 0 = p. This can be achieved by adding four spectra ob-
tained while incrementing / in steps of p/2

I1;þ1 !
ðp=2Þ/ 1

2
I1;�1 ðall other terms being eliminated

by anti-ExorcycleÞ. ð12Þ

In this case, the offset X is preserved (p 0 = p) while the first-
order quadrupolar interaction is refocused (q 0 = �q) with a
scaling of the signal by a factor 1/2. Once again, this fea-
ture of the experiment can be readily appreciated by inspec-
tion of the quadrupolar transfer pathways.

The idea of retaining the shift information while refo-
cusing the first-order quadrupolar interaction has been
implemented in recent two-dimensional correlation experi-
ments designed to separate these two interactions [20]. An
appropriate pulse sequence is shown in Fig. 5 along with
the quadrupolar pathway diagram. At the end of the t1

evolution period, only the offset has lead to a net evolution
while the first-order quadrupolar interaction is refocused.
The duration of the subsequent s periods is chosen so that
one can observe the full echo in the t2 detection period.
This second echo is formed in such a way that there is no
evolution under either offset or first-order quadrupolar
interaction over the 2s period, as can again be seen from
the quadrupolar transfer pathways.

Similar refocusing effects can be observed in dipolar-
coupled systems with two equivalent spins I = 1/2 as occur
in isolated water molecules in solids such as CaSO4 Æ 2H2O
[21]. In this case, one may speak of dipolar echoes, which
obey the same rules as quadrupolar echoes. In systems with
scalar couplings between two inequivalent nuclei I = 1/2
and S = 1/2 as occur in liquids, the offsets (chemical shifts)
can be refocused by converting |aæÆb| (with p = +1) into
|bæÆa| (with p = �1). If one applies p refocusing pulses to
a two-spin system, this leads to coherence transfer process-
es such as |aaæÆab| fi |bbæÆba|, leading to echoes that are
modulated by the homonuclear coupling JIS. On the other
hand, refocusing pulses with b „ p may lead to coherence
transfer processes such as |aaæÆab| fi |abæÆaa|, leading to a
refocusing of the homonuclear coupling. Perfect refocusing
of both offsets and scalar interactions (or homonuclear
dipolar couplings in solids) can be achieved with a
sequence (p/2)x-s-(p)x-s-(p/2)y-s-(p)x-s-echo.

Quadrupolar transfer pathways are also useful to de-
scribe experiments designed for half-integer quadrupolar
nuclei. These often exhibit large quadrupolar interactions
so that second-order terms should be taken into account.
The central transitions (q = 0) in single- or multiple-quan-
tum spectra are only affected by the second-order quadru-
polar interaction, while the satellite transitions (q „ 0) in
single- and multiple-quantum spectra are affected both by
first- and second-order quadrupolar interactions. Under
magic angle spinning (MAS), zeroth-rank (isotropic)
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Fig. 6. Pulse sequences and quadrupolar transfer pathways for spin
I = 3/2 for (A) STMAS, (B) DQF-STMAS, and (C) SCAM-STMAS. The
basic ideas of these experiments which are designed to obtain high-
resolution spectra of half-integer quadrupolar nuclei are readily under-
stood by distinguishing the satellite order q in the quadrupolar transfer
pathways. The solid lines represent desired pathways for arbitrary spin-half
quadrupolar nuclei, while parasitic pathways are drawn with dashed lines.
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interactions such as the offset X remain unaffected. The
first-order quadrupolar interaction and the second-rank
part of the second-order quadrupolar interaction are com-
pletely averaged out. However, the fourth-rank part of the
second-order quadrupolar interaction is merely scaled.
Two-dimensional satellite-transition MAS (STMAS)
experiments [22,23]. allow one to correlate the fourth-rank
part of the second-order quadrupolar interaction of the sa-
tellite transitions (q „ 0) in the t1 evolution period with the
central transition (q = 0) in the t2 detection period. It is
possible to obtain high-resolution isotropic spectra by skew
projections. From the quadrupolar pathway diagram for
the shifted-echo STMAS [24] drawn for a spin I = 3/2 in
Fig. 6A it is evident that all three SQC coherences I1,q

evolve during the evolution period t1. Other coherences
with p „ +1 are readily filtered out by an appropriate phase
cycling scheme. However, the desired satellites q = ±2
(drawn with solid lines) cannot be easily separated from
the central transition q = 0 (drawn with a dashed line).
As a consequence the two-dimensional STMAS spectra
show not only the desired correlation between the two sa-
tellite transitions (q = ±2) in t1 and the central transition
(q = 0) in t2 (I1,±2 fi I�1,0), but they also feature undesir-
able signals due to autocorrelation of the central transition
coherence which persists throughout the t1 and t2 periods
(I1,0 fi I�1,0). For nuclei with I > 3/2, additional correla-
tion peaks can be observed, such as signals that result from
the correlation of outer satellites (|q| > 2) with the central
transition (q = 0). No phase cycling method can filter out
such unwanted correlations.

The double-quantum filtered DQF-STMAS experiment
drawn for a spin I = 3/2 in Fig. 6B utilizes a brief interval
sDQ where double-quantum coherences are excited to can-
cel unwanted autocorrelation I1,0 fi I�1,0 signals [18,24].
From the quadrupolar pathways it is evident that the de-
sired first-satellite coherences I1,±2 (solid lines in Fig. 6B)
evolve in the t1 period until they are converted into dou-
ble-quantum coherences I2,±2 using a selective p pulse ap-
plied to the central transition. At the same time the
central transition coherence I1,0 will be converted into
I�1,0 (dashed line in Fig. 6B). Here, phase cycling can be
used to select coherences involving a change of the coher-
ence order Dp = p 0 � p = +1 (solid lines) while filtering
out the unwanted coherence transfer process with
Dp = �2 (dashed line). Similarly, for half-integer spins with
I > 3/2 (as illustrated for I = 5/2 in Fig. 7), the outer-satel-
lite coherences |q| > 2 that evolve in the t1 period can be fil-
tered out as they retain their coherence order
Dp = p 0 � p = 0 during the selective p pulse applied to
the central transition.

A final example of quadrupolar transfer pathways is
shown for the SCAM-STMAS experiment that is self-com-
pensated for angle misset [25,26]. Complete averaging of
the first-order quadrupolar interaction can only be
achieved if the magic angle is adjusted very accurately;
otherwise the resolution in the isotropic dimension is limit-
ed by the residual first-order quadrupolar interaction.
The SCAM-STMAS experiment has been proposed to
overcome this problem. It differs from the STMAS experi-
ment in Fig. 6A by addition of a pulse applied in the middle
of the t1 evolution period as illustrated in Fig 6C. Ideally,
this pulse interconverts the single-quantum satellite coher-
ences I1,±2 fi I1,«2, while phase cycling can be used to sup-
press coherences undergoing a change in coherence order
Ip,q fi Ip 0,q 0 where p „ p 0. Unfortunately, parasitic processes
such as I1,±2 fi I1,±2, I1,0 fi I1,±2, and I1,±2 fi I1,0 that are



Fig. 7. Pulse sequences and quadrupolar transfer pathways for DQF-
STMAS for spin I = 5/2, analogous to Fig. 6B.
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not shown in Fig. 6C cannot be cancelled, though the latter
two could probably be eliminated in a two-fold double-
quantum filtered experiment that we might tentatively call
DQF-SCAM-DQF-STMAS. The success of such experi-
ments depends on the amplitudes of various coherence
transfer processes, i.e., on parameters that cannot be pre-
dicted by pathways alone. The evolution of the desired
coherences under the first-order quadrupolar interaction
resulting from magic angle misset is eliminated through
the formation of a quadrupolar echo at the end of the t1

period, hence leading to a high-resolution isotropic spec-
trum even if there is a deviation from the magic angle.
The main idea of SCAM-STMAS experiments may be
appreciated by inspection of the quadrupolar transfer
pathways.

3. Conclusions

To summarize, an extension of conventional coherence
transfer pathways allows one to describe various experi-
ments designed for quadrupolar nuclei in solids. Single-
element operators are classified according to their
coherence order p and their satellite order q. The objective
of this paper is not merely to describe known experiments,
but the hope that our graphical conventions may inspire
further discoveries in this lively area of research.
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